
Multiple	Platforms:	
Porting	Agent-Based	Simulation	
from	Grids	to	Graphics	cards	
D r. Ma r iam	K i ran

Un iv ers i ty 	o f 	B radford
Presented	at:
Workshop	on	Portability	Among	HPC	Architectures	for	Scientific	Applications
Super	Computing	2015



Agenda	for	the	Talk
Introduction

Setting	the	stage:	Agent-based	modelling

Introducing	FLAME	and	its	portability	from	HPC	to	GPU

Portability	problems	– rewriting	models	to	make	sure	they	‘run’

Possible	future	directions	of	using	Clouds

Research	challenges

Conclusions

MARIAM	KIRAN 2



Computing	working	with	other	
disciplines

MARIAM	KIRAN 3

Distributed	and	scalable	
computing

Scientific	Computing

Complex	system	models
(economic,	biological,	social	

networks)
Emergent	behaviour	using	
agent-based	modelling

Agent-based	modelling	
on	HPC	and	GPU

(FLAME)
www.flame.ac.uk

Modelling	and	
Simulation	on	

Cloud



Agent-based	Modelling
Each	individual	 is	a	packet	of	programming	code	allowed	to	simulate	
together

Granularity

Interactions

Overcome	most	assumptions	in	the	model

Examples	 in	nature	– bird	flocking	behaviour (boids),	crowd	
behaviour in	humans

MARIAM	KIRAN 4



Introducing	FLAME	for	building	agent-
based	models
Produced	at	the	University	of	Sheffield,	UK.

Flexible	 Large-scale	Agent-based	Modelling	environment.

Based	on	X-machine	architecture	 for	agents.

Being	used	in	a	wide	number	of	projects	(Modelling	of	cells,	 tissues,	biological	and	economic	
scenarios	or	networking	models)

Automatically	produces	parallelisable code	for	models.

Ease	of	programming	for	non-computer	experts.

MARIAM	KIRAN 5



FLAME	files
This file helps 
with 
parallelisation 
on HPC

MARIAM	KIRAN 6



FLAME	advantages
Produces	automatically	parallelisable code.

Default	it	runs	in	serial.

But	by	just	adding	a	flag	–p	,	while	compiling,	 it	produces	a	
parallelisable model	code.

Communication	is	handled	using	an	intelligent	message	
board	library	which	can	pool	out	relevant	messages,	sort,	
randomise or	filter	them	on	any	criteria.

MARIAM	KIRAN 7



Libmboard	– FLAME	message	board	
library

MARIAM	KIRAN 8



Software	Engineering	perspective…
Flame	follows	a	strict	X-machine	architecture	 for	its	agents	allowing	it	to	contain
◦ Memory
◦ Functions
◦ States
◦ Messages	in	and	out

MARIAM	KIRAN 9



Porting	models:	
from	HPC	to	Graphics	Cards

MARIAM	KIRAN 10



Multi	platform	capability
You	can	write	models	easily

Software	works	out	how	to	distribute

All	you	have	to	do	is	run

Need	some	knowledge	of	the	system

Pre	allocation	and	memory	requirements

Sometimes	you	need	to	rewrite	the	complete	model

How	to	test	the	model	rewritten	in	correct?

MARIAM	KIRAN 11

From	FLAME

Software	
does	the	rest



Same	models	running	on	
(a)	different	distributions	and	(b)	number	of	
nodes

MARIAM	KIRAN 12

Changing	placement	of	processes	on	processors- same	model
Changing	number	of	processors- same	model

Note:	Future	work	on	Clouds	may	introduce	a	multitude	of	more	factors	–
Energy,		Cost,	Optimal	VM	placement,	networks,	and	many	more



What	are	the	performance	
characteristics
Main	performance	was	Time

Do	we	need	any	more?

-Model	checking

-Costs

-Eco-efficiency

-Data	patterns	– verifying	results

MARIAM	KIRAN 13



HPC	versus	GPU
Considerable	changes	in	the	software	to	ensure	it	executes	on	GPU:

◦ Writing	the	Agents	– different	model	descriptions

◦ Pre-allocation	of	Agent	memory	– GPU	needs	all	advance	knowledge	– no	dynamic	
allocation	of	memory	is	possible

◦ Message	communication:	need	to	break	down	bigger	 functions	into	simpler	one	message	
funtions

◦ Simpler	versus	Complex	– Remove	dynamic	arrays- memory	needs	to	be	simple

◦ Looping	through	Messages	– Loop	traversal	is	different	,	rewrite	 functions

◦ Agent	birth	and	death	– Advance	memory	allocation

◦ Real	time	visualization	– HPC	does	not	allow	this

MARIAM	KIRAN 14



Looping	through	Messages
Code	for	HPC	needs	to	introduce	a	flag	‘finished’	to	leave	 the	while	 loop.

Else	simulation	hangs!

MARIAM	KIRAN 15

GPU	implementation:
int MyFunction(xmahine_memory*	agent,	xmachine_message_list*	list)	{

bool	finished	=	false;
xmachine_message*	message	=	get_first_message(list);
while(message)	{

if	(!finished)	{
if	(message->id	==	agent->id)	{

agent->state	+=	message->state;
finished	=	true;

}
}

message	=	get_next_message(message,	list);
}
return	0;

}

HPC	implementation:
int MyFunction (xmahine_memory*	agent,	
xmachine_message_list*	list)	{

xmachine_message*	message	=	get_first_message(list);
while(message)	{

if	(message->id	==	agent->id)	{
agent->state	+=	message->state;
return	0;

}
message	=	get_next_message(message,	list);
}
return	0;

}



What	about	cloud?
OPEN	LABS

GIV ING	ACCESS	EVERYWHERE

MARIAM	KIRAN 16



Computationally	- why	move	towards	
Cloud?

Issues High performance computing Cloud computing
Kind of models
and processing

Processing is limited is some
architectures

Can introduce dynamic
scalability for more complex
processing.

Cost Access to expensive hardware to
model and simulate systems.

Resources can be hired as
needed.

Failure
recovery

No fault recovery when disk space
runs out.

Applications can burst to more
Clouds if needed, automatically.

Dynamic
changes in the
model

No real time processing, jobs are
submitted to a queue, which
means real time changes cannot
be incorporated in themodels.

Can execute jobs on the fly
which can read real time data
feeding to the models directly.
(very useful for sensor related
models)

MARIAM	KIRAN 17



Cloud	Computational	challenges	relevant	
to	ABM
Memory	 constraints	 saved	as	big	data	sets
Service	 level	agreements

Optimise	 computation
Reduce	time

Reduce	costs
Energy	efficient	code

Hide	away	as	much	computation	 as	possible	

- VM	doing	 processing
- Data	being	saved	 in	data	servers

MARIAM	KIRAN 18



Research	challenges	still	relevant
1.	Language	to	communicate	models	between	
multiple	groups

2.	Automatically	parse	this	to	optimal	distribution	
for	processing	
◦ Rewrite	models	for	GPU,	HPC,	Cloud?
◦ What	are	the	performance	metrics	needed	by	
modellers?

3.	Just	saving	information	needed,	global	averages,	
specific	events	for	verification

‘Open	lab’	to	execute	and	share	models	and	
results?

Model	
description

(1)

Particular	
modelling	
technique
(e.g.	ABM)

Parse	to	produce	
automatic	

parallelisation
(2)

Code	executes	

Results	are	saved,	
analysed,	visualise
(real-time,	batch)	(3)

Architecture	
dependency
(HPC,	GPU,	
Cloud)

what	is	needed?	
Global	parameters,	

memory	
constraints,	
additional	
processing?

Performance	
metrics
(what	to	
consider?)

MARIAM	KIRAN 19



Conclusions
Simulations	are	getting	larger	and	more	complex.

Realistic	 simulations	require	 larger	populations,	or	multiple	 types	of	population,	as	the	validity	
of	emergent	characteristic	 dependent	on	both:	the	accuracy	of	the	behaviour modelled	and	
population	sizes.		
Forecast	behaviours of	systems	faster	than	the	wall-clock	 time.	

Run-time	costs	are	presently	inhibiting	 the	effective	use	of	ABM	as	forecasting	tool.

Agent-based	models	have	successfully	been	able	to	uncover	new	aspects	of	economic	systems	
such	as	the	effect	of	migration	on	EU	labor	markets	or	uncovering	some	underlying	 facts	in	
biological	 systems	and	need	HPC,	GPUs	and	newer	technologies.

Many	models	written	for	HPC	and	GPU	should	portray	similar	characteristics,	 hiding	away	much	
of	the	software	complexity	 from	the	non	computing	scientists	using	the	tools	to	write	their	
models	which	is	a	challenge	 in	its	own	right.

MARIAM	KIRAN 20



Thankyou	and	
Any	questions?

MARIAM	KIRAN 21


